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By I. Fliigge-Iotz and C. F. Taylor
SUMMARY

Nonlineer elements are sometimes added to linear control systems
in order to improve the response of the system to an arbitrary input.
This can be done in different wasys, one of them belng the veriation of
the coefficients of the dlfferential equation describing the system
before the nonlineer elements are added. This veriastion of the coeffi-
clents may be done in a continuocus or in a discontinucus wey. In the
present paper a discontinuous varistion of the coefficlents is studied
in detall and investligated for practical use.

The nonlinear feedback is epplied to a second~order system. From
former analyticel considerations the process of control i1s visualized
as estaeblishing an ensemble of linear second-order differential equations
(some with steble asnd some with unstsble homogenecus solutions) and
switching from one equation to another so es to maintsin small instanta=-
neous error for relatively srbltrary imputs. Physicaelly, this control
process is realized with a linear second-order control system to which
have been added possible dlscrete combinations of proportional and Gerive-
ative feedback. The particular combination of feedback employed at any
instant ls determined by a feedback switching clrecuit which is in turn
operated by sensed blnery informetion obtalned fram the output, output
derivative, error, and error derivative (nsmely, the signs of these vari-
gbles). Techniques thet are common to the digital computer field are
used to implement this switching circuilt.

Once physical realization is completed, simulation techniques are
used to study end evaluate the performence of the nonlinear control system
and to compare it with a linear system for & wide variety of imputs. In
addition, the effects of physical imperfections that are likely to be
encountered in any application of the control theory are considered (e.g.,
switching delays and acceleration limits).

An analysis of the experimentsl resulis shows that this type of non~
linear control system performs better than.a linear control system having
a natural frequency 15 times greater. For this comparison, performance
is evaluated in terms of the average value of the magnitude of the instan-
teneous error for band-limited inputs. Further, in contrast with the
linear system, the nonlinear system performsnce is virtually independent
of variation in the damping factor of the system.
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A preliminary extension of this type of nonlinear control concept
to higher order systems is presented. ﬁxperimental results are given
for a third-order system. These results show that Just as in the second-
order case the nonlinesr system performance is better than that of a
comparable linesr system.

INTRODUCTION

With the demand for more exacting performance, more emphasis hasg
been placed on nonlinear aspects of control systems. The term "comtrol
systems" can be interpreted to include aétive networks and feedback
amplifiers as well as servomechenliesms. From the standpoint of analysis,
unintentional nonlinearities have to be taken into account to explain
performance. From the standpoint of synthesis, intentional nonlinearities
heve been introduced to improve performence. However, up to this date
only in. speclal cases have advancements ﬁeen obteined in the field of
nonlinear control systems. '

The designs of nonlinear control systems have inherent advantages;
One sdvantage is that the response of a nonlineer system at & certaln
time can be made less dependent upon past response than can a linear

gystem of compareble power-handling cepab;lity.l This means that the
nonlineer system can be made to follow more arbltrary classes of inputs
with less dynamic error than the comparable lineear system. Another
advantage is that the mathematical diffilculties encountered may actually
be conducive to consideration of more realistic criteris of performance.
In the nonlinear realm 1t is essentlially &s easy to invoke a criterion
such es the minimization of ingtantaneocus!error for nonstationary random
inputs as 1t is to invoke the largest possible flat amplitude response
for sinusoldel inputs.

In the present paper a control system of second order, which was
first suggested by Flilgge-Lotz and Wunch on the basis of analytical
studies (ref. 1), is investigated. The physical realization of this
system and its performance are studled in great detail.

This investigation was conducted at Stanford University under the
sponsorship and with the financial assistance of the National Advisory
Committee for Aeronsutics. The authors wish to thank Dr. A. M. Peterson
of the Electrical Engineering Depesrtment of Stanford University for his
continued interest and his most helpful advice on the electronic problems
which were encountered during this investigation. They also wish to
thank Mr. G. S. Bahrs for his useful suggestions for a speecial translstor
swltching clircuit.

11n 1inesr theory, the impulse response or the autocorrelation func-
tion of the system gives an indicetion of how past response is welghted.
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SYMBOLS

A peak-to-peak emplitude of input

a,b,c parameters defining e system

a,b,c parameters in differential equation for control servo

B viscous damping of motor and reflected loed referred to motor
shaft

D linear damping factor

e ingtantaneous error

e! = defdr

H(p) transfer function, 1/(ap + 1)

J inertia of motor rotor, gears, and reflected load

j= -1

K1,Ko galn constents

kn constant of proportionality bebween output velocity and back
electramotive force

M constant depending on initial conditions

P operator, 4/dt

T repetition rate or period

t time

tmd maximum elloweble swltching delsy

v input voltage

bd input into system

y output from system

v approximation of output

e symbol used to denote different constants

Bu = =1P sen (y'e) = o8 sen (y'e')
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(Bm’7n) smallest values of psrameters glving good nonlinear systen
min performance T

13’26’17’27 positive constants

= - - ]
7, = -17 sen (ye) - 57 sen (ve')

5 positive constant
€ smell positive quantity
M,V coordinates introduced in sppendix D N
gl = di/d’T
p radius of curvature
c real part of camplex freqpéncy veriable o + Jw
T nondimensional ‘time veriable normalized with respect to ?k
Wy ('L)V-b ! ' -
Q nondimensional frequency, ofw, -
w frequency ' i
Wy natural frequency of undemped linear system
() time asverage
() a( )/ar
()" a2( )/ar? -
2 equality sign in equations which describe operations (see
egs. (2) and (3))
Subscripts:
d ideal or desirsable
e error : - _
im imege o ' "'
L 1imit = ' -
lin linear 7

m,n = 0,1,2,3
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2
mex maximum or upper bound
min minimum or lower bound
nonlin nonlineax
o] optimum

REVIEW OF LINEAR CONTROL THEORY

It is desireble to obtein from linear control theory some useful
concepts that can be generalized to the nonlineer case. These concepts
are:

(1) Operational notation
éa) Transfer functions
b) Block-diagram representations
(2) Control criteria
(3) Control through peremeters
At the onset second-order systems are considered. However, there is no
difficulty in extending these concepts to higher order systems.
Operational Notation, Transfer Functlons, and Block Diagrems

Consider a physical process or situation in which the output is
described in texrms of the input as

2
ay ay. =
8 " +b g+ ey x(t) (1)

where a, b, and c¢ are constants, y = y(t) d1s the output, and
x = x(t) 1is the input.

Utilizing the operator p = d/dt, equation (1) mey be written

(a92 + bp + c)y 2« (2)

(Eq. (2) reads "(ap® + bp + c) operating on y equals operationally x.")
Formal solution of equation (2) for the ratio of output over input ylelds



6 ) NACA TN 3826

by definition the operational transfer fiunction for the system. Thus

ze L = (3)
X ap2 + bp ¥ ¢

The operational block dlegram for the system is obtained by placing

inside & box the transfer function, egquation (3). Coming into the box
1s the input; golng out of the box 1s the output (see sketch a).

x 1 y
— 5 )
Input "+ PPt e | output
Sketch a.:

Here transfer functions and block diagrams are utlilized merely as
shorthend operational notations for differentlal equatlons. This is
opposed to the Leplace transformation viewpoint where transfer functions
(and thus block dlagrams) have the properties of functions of the complex
frequency verieble, p = o + jw. The reason for stressing thlis inter-
pretation 1is that shorthand (operational notation has proven useful in
the transition to nonlinesr control whereas the Laplace trsnsformstion
viewpolnt (e.g., synthesis in the complex freqpency plane in terms of
poles and zeros) haes not.

Control Criterisa
To gage the performance of an actuai system an ideal or desirable

system is usually esteblished as a straight through comnection (i.e.,
Y3 = x a8 denoted in sketch b, a block disgram of an ideal system).

X y

—] 1 .

Input Cutput

Sketch b

Comparison between the desired output ya génd sctual output y is
accomplished by utillzing the instantanecus error:

=(yg ~¥) = (x~y)
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A control criterion or criterion of performsnce is defined as the mini-
mization of some property of the Iinstentaneous error e for a given
class of inputs. The minimizing process can be exsct (i.e., resulting
from a varlational formulstion of the problem) or spproximate.

Control Through Paremeters

In linear systems the process of control is usually physically
obtalned by epplylng feedback and/or compensgtion to the system that is
to be controlled. A control criterion is reaslized (as closely as possi-
ble) by adjustment of these applied quantities. The concept of control
through paremeters is en interpretation of this control process in terms
of the differentlal equation descrlibing the process. A simple example
illustrates this concept.

Consider the poesition control servo shown in figure 1. The uncon-
trolled (open-loop) system consists of an semplifier, armature-controlled
motor, gear train, snd load. Closed-loop operation is obtained by uti-
lizing proportional and derivative feedbeck. The gain constants Ky

end K, sare adjusteble. Armature inductance has been neglected. From

the block diagram the differential equation for the open-loop system may
be written:

3ty B_\d&yv _
(kam)dte ¥ (Kl at Xt ()

Similarly, the closed-loop differential equation is

g \a& , (B * ok _
) (e )&+ )y - (o) (5)

In either case the differentiasl equetion is of the form

= EEX +b %% + Sy = x(%) (6)

where a set of three parameters &, b, and C completely characterizes
the system. It is possible, then, to view the process of control in

terms of these parameters. One starts wlth a parameter set (a,b,c)
defining the uncontrolled system. A control criterion ylelds an optimum
paremeter set (a,b,c)y. Control (feedback and/or compensation) is intro-
duced ideally meking it possible to adjust (a,b,c) to (a,b,c)y. In the
above example the gain constents K; and K, afford this adjusiment.
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This adjustment of the coefficients msy be dome in a continuous or
a discontinuous way. In reference 2 Schmid and Triplett have described
an interesting and efficlent way to vary the coefficients of a basically
linear system continuocusly.

NONLINEAR CONTROL

Transition To Nonlinear Control

In the preceding section it has been'mentioned that the process of
Linear control of second-order systems may be visualized es the adjust-
ment of the parameter set (a. b,c) to the Set (a,b c)o. The term optimum
wes used Iln the sense that some cri'berion of performa.nce was approached
ag closely as possible.

It seems logical in the transition to nonlinear control still to
hypothesize control through paremeters. The transitlon 1s obtained by
allowing the paremeters to become functions of the output y(t) and the
input x(t); that is,

a—sa(x,y)
b—>b(x,¥y)
C—> C(XJY)

The mathematical description of the system is now
a(,3) EL + vlx,y) &+ olieyly = x(t) (1)
dt A '

Without knowing the specific nature of the' functions a(x,y), b(x,y),
and c(x,y) 1t may be seen that equation (7) is a nonlinear, inhomoge-
neous, and/or nonsutonomous differential equation. Mathematlcally,
little in general can be said about the solution of equation (7) given
the function set a(x,y), b(x,y), and c(x,y). It seems, then, even
more hopeless to attempt s synthesis problem which involves both finding
the function set [a(x,y), b(x,y), c(x,y)]o for a specified control

eriterion snd then physically realizing the sjstem described
mathematically.
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Nonlineer Control Theory

One enalytical attack on the nonlinear control-system-synthesis
problem hes been maede by Fliigge-Iotz and Wunch (refs. 1 and 3 to 5).
They suggested varying the coefficlents a, b, and ¢, not continuously,
but discontimuocusly. That means that for %7 <t < t, there is one set

of coefficients, for i, <1t < t3 there is another set of coeffilcients,

and so on. The different sets of coefficients are chosen in advance, but
the times +t; for change from one get to another are determined by the

value and the decrease or increase of the deviation (x - y). In other
words, the system is linear in any interval 14 <t < t4,;, but is non-

lineer in the whole. The transition at any switching time t4 occurs
with continuous values of y(t) and dy/dt, but discontinuocus velues
of (a2y/at?).

Phase~-plane techniques were used for studying eppropriate sets of
coefficients and the sppropriate dependence of the swiltching times on the

deviations.2 The suthors succeeded in finding a switching rule which
assures good performance in & multltude of cases. Thelr control system
is mathematically described in the following way:

2_2 £ o(1 + )2 + (L + )y = x(r) (8)
where
x(T) input
y(T) output
D linear damping factor (when Bp = 7 = 0)
T nondimensional time veriable normalized with respect to wy;

that ig8, T = o,t

2For details the reeder is referred to references 1 and 3 to 5.
Reference 1 contains the ideas but is so condensed thet the inqulsitive
reader will find it useful to read references > to 5, of which refer-
ence 5 is probably the most accessible. Figure 3, p. 12, and figure 30,
p. 70, of reference 5 will help in getting acquainted wlth the phase-
plane traejectory of an ocutput. BSome of the orlginal studles are described
agaln later in the present paper when the performance of the system is
discussed.



10 NACA TN 3826

Wy natural frequency of undemped linear system, D =8, =79, =0
Bp = -1B sen (y'e) - 8 sgn (y'e')

m=0,1, 2, 3

7n = =17 sen (ye) - 57 sen (ye')

n=0, l, 2,5

1BsoB57,,7 POsitive constants

_ f _ J+1 for £>0

sgn (f) = TET - {-l for £<0

e instantaneous error, e = (yd - y) =(x - y)
( ) =0o( )or

Actuslly, equetion (8) is a normalized form of the control equation
derived by Flilgge-lLotz and Wunch. However, the notation hag been some-
what changed. BSee appendix A for a ccmparison of notations and the
normelizetion involved.

The subscript convention is

Bz = 1B + B 75 = 17 + o7 '
Bo = 1B ~ oB Yo =17 = o7
’ (9)
By = =18 + 2B = =By 7L Tt oY = =70
Bo = =1 = oB = =Bz 70 = 717 o7 = <73 J

Properties of Equation (8)
The following properties of equation (8) are noteworthy:

(1) Equation (8) is a piecewlse Linear but overall nonlineer differ-
ential equation.

(2) The paremeters B, eand y, are stepvise switching functions

of time (their implicit varisble). This property is illustrated in fig=
ure 2. T
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(3) The time of switching snd the particular combination of the
peremeters P end 7y, employed &t any instant are explicit fiunctions

of the output y and the input x. Specifically, they asre determined
by quantized information derived from the output, output derivative,
error, and error derivative, namely, the sign of the products sgn (y'e),
sgn (y'e'), sen (ye), end sen (ye').

() There are basically 16 m,n subscript combinations and thus
16 Bms7n Parsmeter cambinations. However, a detalled study of property

(3) shows that only 8 sre sllowed. The allowed combinstions may be

m=n=0,1, 2, 3
or

n#n
m+n=3

The reason for the "exclusion principle" on coefficient combinations
stems from a desire to obtaln mirrored-image outputs for mirrored-image
inputs; that is,

V(™) = -y ()
is desired when

xim(T) = 'X(T)

(5) The control criterion that was employed in obteining the func-
tional dependence of By and 7p was

|va - ¥| = |x -¥| = || <e
where e 18 a small posltive quantity. This criterion of meintenance
of small instantaneous error between desired output and actual output

enabled reduction of equation (8) to the spproximate sutonomous differ-
ential equation (see refs. 1 and 3 to 5)

'+ 2D(L + By)y' + 7y = (x - )
=~ 0 (10)

Thus phase-plane techniques could be employed to find the functionsal
. dependence of @, and 7,.
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(6) Once the linear damping factor D i1s fixed the process of con=-
trol is obtained by switching perameters B, and 7,. Equation (8)

consists- of an ensemble of elght (see property (4)) linesr differential
equations with constant coefficients. The process of control may be
visualized as the switching from one member of the ensemble to another.
This switching is determined by quantized information derived from the
input end output (see property (3)). Friom another point of view (con-
sistent with the spproximation described in property (5)), the output ¥
is to be forced to setisfy two conditions simultaneously, that is, both
sides of equation (10). This is gpproximately possible by switching to
various By &and ¢y, parameter combinations and cen be visuallzed as

the process of switching to various phese trajectories of equation (10)
in the phase plane of ¥y' sagainst y.

Discussion of Nonlinear Control

In the section entitled "Transition:to Nonlinear Control" a logical
transition to nonlinear control systems utilizing the concept of control
through parameters is suggested. However, mathematical difficulty hampers
the development of this gpproach. In thé next two sectlons a particular
nonlinear control theory is presented. This theory constitutes the first
step in the gsynthesis of a nonlinear control system which obtains control
through parameters. Since the functianal dependence of the perameters
has been established, the problem is reduced to finding a set of five
(constent) parsmeters (D’lﬁ’25’17’27)0'- It should be appreclated, how-

ever, that even the optimization of this“fifé-parameter set cannot in
general be accomplished analytically because of the overall nonlinear
nature of the problem.

Aside from questions on the analytidalxbptimization of parameters
in equation (8), there are equally important practical questlions such as:

(1) Cen & useful control system thet ie described by the nonlinear
differential equation (eq. (8)) be realized?

(2) If the system Is realizable, wh&t_is its physical nature?

(3) If the system is realizable, how does 1t compare in performance
and complexity with a good second~order linear control system?

There are then mathematical difficulties on the okre hand and physicel
difficulties on the other. The mathematig¢al difficulties could be handled
by numerical methods of integration of the differential equation (e.g.
utilizing a digital computer). However, this would give little insight
into the nature of.a system that 1s controlled through discontinuous
variation of the parameters B, and 7,. It has been found advantagecus
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to Investigate the physical questions flrst and then to utilize simulation
techniques (analog computer) to investigate the analytical properties of
this type of control.

PHYSTCAL REALIZATTON

Physical Model

It is desireble to study the nature of a physical control system
that is described by en ensemble of eight Iinear differential equations
with control belng accomplished by switching from one member of the
ensemble to another. To do this equation (8) 1s reesrranged as shown
below:

%+2D%+y=x(7)—(@ﬁm%}+7ny> (11)

or in operationel notation

(p2 + 2Dp + l)y 2x - (2Dﬁmp + 7n)¥ (12)

Forgetting for the time Being that the parsmeters By and 7, are

actually functions, one interpretation of this operational equation and
thus of equation (8) is shown in figure 3.

Figure 3 can be modified to teke into account the fact that Bm
and 7n 8re stepwise switching functions of time, their implicit verisble
(i.e., B, end 7y, can each take on four discrete values). This is

shown symbolically in figure 4. The explicit functionsl dependence of
the parameters B, &and ¥, has not yet been given and is thus indicsated

es & swltching logic of undefined charsacter.

Utilizing the block diagram of figure L, the physical interpretation
of the nonlinear control system described by equation (8) is quite
straightforwaerd. This system consists of:

(1) A linear feedforwerd portion. This portion could be a linear
control system in itself (e.g., the slmple position control servo of
figure 1 and equation (5)).

(2) A feedback switching circult comprised of:
(a) Four discrete values of proportional feedback "n

(two positive and two negative as shown in fig. 2)
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(b) Four discrete vealues of derivative feedback 2Dy,
(two positive and two negative as shown in fig. 2)

(e¢) A switching logic which at any instant determines the
particulsr combination of derivative and proportional feedback

DB s7y employed

Switching Logic

In this section it is shown that digital-computer technigues cen
be utilized to establish the switching logle for the feedback switching
circuit mentioned in the previous sectiodn.

Recall that the paremeters B; and 1y, have been defined as func-
tions; that 1s, ce ~

B = -1B sen (y'e) - 4B san (y'e')
=0, 1, 2, 3
mEO L&D ’ (13)
7n = -17 sen (ye) - o7 sen (ye')
n=0,1, 2, 3 J

where the subscript convention has been 'glven by equations (9). Equa-~
tlons (13) determine the switching logic. Thus, for exemple, 65 is

chosen when (y'e) <0 and (y'e') < 0! and 7o 18 chosen when
(ye) >0 and (ye') > 0, so that the combination 370 1s chosen when

(y'e) <0, (y'e') <0, (ye)>0, and (ye') > 0. At this point it
appears necessery to form the products ye, ye', y'e, and y'e' and
then to find the sign of these products in order to establish the
switching logic. Physically, however, the process of multiplication is
to be avoided 1f possible. That there 1s a possibility of avoiding
multiplication may be gleaned by realizing that

wgn (ab) = sgn (a) sgn (b)
since R

ab_ _ _&8 . b
lab]|  Ja] |b]




NACA TN 3826 15

Thus equations (13) mey be rewritten as

Bm = -Sgn (.v')[lB sgn (e) + 5B sgn (e'Z] ]
m=0, 1, 2, 3

7y = -Sgn (Y)E_)’ sen (e) + o7 sen (e'):l ( (1)
n=0,1 2,3 )

Agein the subscript convention is defined by equations (9).

Thus, utilizing equations (13) s for example, 53 is chosen when

y'>0, e<0, e'<0
or when

y'<0, e>0, e'>0
70 is ghosen when

y>0, e>0, e' >0
or when

y<0, e<0, e'<0

so that the cambination (B3 ,70) is chosen when

¥y>0, y'<0, e>0, e'>0
or when

y<0, y'">0, e<0, e'<0
From this example it can be seen that it i8 not necessary to find the
signs of products but rather that it 1s sufficient to find separately
the signs of y, ¥', e, and e'.

Since the sign of a varlsble is quantized binery informetion of the

verigble, 1t is convenient to utilize digital-computer techniques to
further the switching logic. This may be done as follows:

Let the convention be adopted that y > O be represented by O
(binery zero), y < O be represented by 1 (binary one), and similarly
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for y', e, and e'. If the ordered sequefice is now established as

(Y) v, e, e’)

four-diglt binery logic may be employed to encode equation (14). In
particular, & binary coded decimal may be used (see table 1).

It was mentioned in property (4) of the section "Properties of
Equation (8)" that not all of the 16 possible Bp,7, paremeter combine-

tions were allowed under their definition. This was termed an exclusion
principle on the allowed coefficient combinations. One of the advantages
of the suggested binary coding scheme of.tgble 1 is thst this exclusion
principle is bullt into the code. To understand this, consider the
example of the combination 5370 glven previously. In the code langusge

3570 1s chosen when the binery mumber Oloo_or 1011 occurs. What is

ilmplied by this example is that a binary number and its complement must

be identical (i.e., 0000 = 1111, 0111 = 1000) as far as the switching _
logic is concerned. Thus out.of the 16 possible four-digit binary numbers
only the first 8 are unique. That is, in counting from O to 7 in a binary
coded decimal, 1f complements are includéd then so are the other 8 possi-
bilitles, 8 to 15 (see table 1).

The allowed B;,7, perameter combinations along with the encoded

logic of table 1 a¥e summarized in matrix form in table 2. Examples are
given to illustrate the meaning of the table. In general the allowed
subscript combinetions are F-

m=n=0,1, 2, 3
or
m#n

m+n=35"

Realization Completed

Now that equation (14) has been successfully interpreted (encoded)
in binary-logic form (teble 2), the realization of a feedbsck swltching
circuit utilizing this encoded logic is g typical digltal-computer
swiltching-circuit problem. As is characteristic of aeny synthesis process
there will, in general, be msny ways to design this feedback switching
circuit. The block disgrem of figure 5 shows one design that completes
the physical interpretation of equation (8) along the lines sterted in
figures 3 and k. o
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In flgure 5 the feedback switching circuit consists of:

(l) The four discrete values of both derivetive and proportionsl
feedback 2DBI]1’ 7n

(2) A relsy switching circult that connects the proper feedback
cambination

(3) Zero-coincidence detectors CD +that drive the benks of relays
to one position or the other depending upon the signs of the sensed
veriables

It should be noted that, depending upon the application,. other forms
of sign-sensing devices and other switching devices such as diodes, tran-
sistors, electronic switches, and/or magnetic amplifiers could be employed
to obtain other realizstions of equation (8). In any cese the following
properties are basic to any realization:

(1) The signs of the four variebles y, ¥y', e, snd e' are
sensed. This may be thought of as the process of "reading in" the four-
digit binery logic of table 1.

(2) On the basis of the 24 poseible binary decisions the required
feedback combinations 2DB,,7, as defined in teble 2 are comnected arocund

a linear second-order member.

It 1s lmportant to stress that the only type of nonlinear operations
required in the reaslization of this nonlinear control system are switching-
type operations. In eddition, &ll the swlitching is to be performed in
feedback paths, which meens that the switching can be done at low elec-
tronic power levels. These practicel features are definite design advan-
tages. Thus, in summary, it can be said that this type of nonlinear
control system is not only physically reallizable but also practical from
an instrumentetion standpolnt.

EXPERIMENTAL VERIFICATION OF NONLINEAR CONTROL THEORY

Discussion of Similation Techniques

Simulation techniques were chosen as an experimental mode of inves-
tigation of performance of the nonlineer control system reelized from
equation (8). These techniques offer the following edvantages:
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(1) Proximity to the actual control system. This means that the
same practical features with regard to Instrumentetion (see the section
entitled "Realization Completed") are exploited to fullest advantage.
Thus, Jjust as 1n the actual system, the only nonlinear device required
for the simulated model is & binary logfc feedback switching circuilt
(see appendix B for details). The linesr portion of the system is simu-
lated on an analog computer. Here the only operations required are sum-
mations, two integrations, and one differentiastion. These are all
operations which an anslog computer does well. It can be said then that
the accuracy to which the simuleted model simulates equation (8) depends
primerily upon the realized feedback switching circuit. The most essen=-
tial type of imperfection to be expected in this switching circuit is
time delay in switching. Exactly the same type of imperfection will be
met in the physical control system. Thus there will be more nearly a
one-to-one correspondence between the simulated model and the asctual
system than between either and equation (8).

(2) Convenience in experimental investigation. In order to chersc-
terize the output y of the nonlinesr system completely, & set of five
parameters : .

(Ds 185 2Bs 175 27)

and the input x must be specified. In the performence evaluastion of
the system 1t is necessary to be able to vary these characterizing
quantitlies conveniently. Simulation techniques allow this.

Presentation of Experimental Results

Figures 6 to 17 present experimental rébults obtained from the simue-
lation studies of equation (8). Briefly, the results are presented as
follows: - S '

Figures 6 to 12 compere the responsés (output y and error e) of
the nonlinear system with that of a linedr system for various classes of
inputs x. (In comparing the linear and inonlinesr responses it will be
noted that there is not exact synchronism of events because, with the
availeble experimental facllities, it was necessary to obtain the two
responses separately.) The linear system utilized is that which consti-
tutes the feedforward member of the nonlinear system corresponding to
the case where By = 7, = O. The nonlinéar system for figures 6 to 15 is

Bz = -Bgp = 2
Bp = =1 = 0.5
7§="70=2' -

Yo = -r1 = 0.5



NACA TN 3826 19

Figure 6 compares the system responses to sinusoldal inputs and
figure 7 shows the responses to triengular-wave inputs. A partially
integrated square wave x(rt) is defined as the output of a first-order
linesr system characterized by the transfer function H(p) = 1/(ap + 1),
when the input xl(T) is a square wave. The responses of linear and

nonlinear systems to this type of input are given in figure 8. The
responses of the systems to small sinusoidel inputs sre glven in fig-
ure 9. Figure 10 gives the responses to clipped sinusoidal inputs. Fig-
ure 11 shows the response of the nonlinear gystem to sinusoidasl inputs
that have been digplaced with & direct-current component. Figure 12
shows the responses of linear and nonlinear systems to a triangulsr-wave
input whose periods and amplitudes are randomly modulated.

Figures 135 to 15 deal with the effects of imperfections that are
likely to be encountered in the actual control system. Figure 13(a) glves
the results and data of an experimental investigation on the effects of
switching deleys due to threshold 1n sensing the sign of the error,
sgn (e) for a triangular-weve input. The experimental results for a
constant 9-volt input (see fig. 13(b)) are given below:

Threshold, MV « « « « « « « « « « « « « « o 1 26 36 by
Pesk-to-peak error, MV . . . « « « o . o o 4l 124 220 290

Figure 14 shows the effects of placing progressively smaller limits on
the acceleration of the nonlinear control system. For each value of y"
limit considered, the output, output derlvative, output acceleration,

and instantaneous error are shown. The effects of a velocity limit on
performence of the nonlinesr esnd linesr systems are caompered in figure 15.

Figure 16 presents the responses of some special cases of the non-
linear system (special with respect to the choice of the Bp &nd o,

parsmeter values). In this figure the system responses to & triangular-
wave lnput are given for four different paremeter sets. The parameters
pertinent to these results are listed in table 3 for easy reference.

Figure 17 glves the response of the nonlinear system possessing a
low linear demping factor D = 0.1l. The responses are for a triangular-
wave Input whose frequency wes varied In the same menner ass that of fig-
ures T(a) and T(c).

Detalled discussions of these results are given in the section
entitled "Discussion of Results."
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DISCUSSION OF RESULTS

Performence Evaluation of Sinusoidal Imputs

To coamplete the synthesils of the nonlinesr control system that has
been derlved from equation (8), 1t is necessary to choose the magnitudes
of the parsmeters that characterize the system, that is, ( D,lB, 2{3 317> 27)

or (D 33,52,73,72) It is expected that the performance of the system

depends on the cholce of these parameters. For studying their influence,
similstion techniques proved to be very convenient Experimental results
were given in figures 6 to 12 where the response (output y and error e)
of the nonlinear system was compared with the response of a linear system
for a varlety of inputs. This gives the possibility of establishing the
properties of the nonlinear system not only by itself but also with respect
to a linear stenderd. The lineer system employed for this purpose was

that which constitutes the feedforward member of the nonlinear system

(i €., By =7y = 0).

These experiments allow parsmeter values for good performance of the
nonlinear system to be found. Analytical and practical considerations
that gid in the optimizatlon are treated later in the section entitled

"Choice of Parsmeter Values.'

The sinusoidal responses of the nonlinear and linesr sYstems are
campared in figure 6. Here, the frequency range considered weas
0.1 £ Q =awjw, $2. The peak-to-pesk input amplitude was 20 volts. These

results show that the nonlineer system reproduced the sinusoidal inputs

up to the frequency & = 1.4 with virtually no instantsneous error when
compared with that of the lineer system. :For higher frequenclies the error
for the nonlinear system increased rapidly to the same order of magnitude
as that of the linear system.

Substantially the same comparative performence was displsyed by the
two systems when the input was a smaller ih-volt peak~to-peak) sinusoid
as is shown in figure 9. . i

Figure 11 gives the response of the nonlinear system to a 20-volt
peak~to-peak osculating sinusoid over the frequency range 0.1 S £ 0.8.

This is B severe type of input for the nonlinear system since both x

and x' simultaneously go to zero. This implies that y and y' are
also small so that 1n equation (8) the discontinuous variations of the
paremeters Bp,yn cennot be so effective in_determining the acceleration

y", since

y'=x - E?D(l + Bm)y' + (1 + 7n)y] (15)
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From the figures 1t is seen that the nonlinear system did hawe some dif-
ficulties near the osculating regions; further, the peak error increased
as the frequency was increased (see appendix C). As might be expected
from equation (15) this error for small values of y and y' can be
reduced by increasing the magnitudes of the pesrameters (this will be
discussed in more detail in the section entitled "Choice of Parsmeters").
At any rate, by comparison, the error for the present system is always
less then that of the linear system of figure 6. (In the linear realm,
error is independent of a shift in the direct-current level of the input.)

Teken collectively, the 20-volt, the Y-volt, and the osculating
20-volt sinusoldal inputs tend to form a more realistic appraisal of the
nonlinear system performance than a single input emplitude. There is
8tl1ll much that can be lesrned from a detailed study of these three
responses, but first it is desirsble to obtain some sort of a quantitative
comparison between the nonlinear and the linear system performesnce. One
such comperison can be made as follows:

(1) Assume that the input to both systems x(7) 18, and hes been
for & long time, a 4-volt peak-to-peak sinusoid of frequency

Q=ww, =0.1

so that as far as the llnear system is concerned this is a steedy-state
alternating~current input.

(2) Determine how much the band width or the natural frequency ay,

of the linesr system must be increased in order that the time average of
the magnitude of the instantaneocus error .

oy 2
el = B telar

0

for the linear system be reduced to that value given by the nonlineer
system.

Here 1t is easy to show that for the low-frequency stesdy-state
alternating-current case

|e|11n = %? a| (16)

xlmax

For en inmput x = lxlmaxeng the steady-state error is given by

A 1
e=EXxX -~y = !xlmax - 2>eJQ-T
1 + 2D - @
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For smell values of & this equation ylelds

e ™~ |Xlggy |l = (1L - 302D + . . .)]ed0"

~ | x| gy (302D) ed87

07 = 2
dar = Zlelpay

or .
le lnax =~ 2D |x lyay
but -
L .
eliin =%f lelpg, 8in a7
therefore -

[elian ~ 22 Qlxly, (17)

For the glven system and input

lefqy, = 0.15

For the nonlinear system and the same input (epproximate calculation

from fig. 9(a))

A

lelpon1in = -0k

v

1 v~
lel pon11n = E'e[lin

Now from equetion (17), since £ = w/wy, 1t is seen that in order to

reduce lelyy, by this factor of 15 that
same factor. )

w, must be Iincreased by the

In the example of the linear control system of figure 1 and equa~

tion (5) this increase in wy by & factor

of 15 would meen that both

the inner and outer loop gelns must be increased by the order of magni-

tude of (15)2 since
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Kily _ 2
5 (@)

This is true assuming that the demping factor remains constant. Such
an increese in the loop gains is frequently not at all physically possible.

Up to this point little attention has been given to the detalled
nature of the nonlinesr system response. Closer inspection of, for
example, figures 6(a) and 6(c) shows that the output y is & function
that links serpentine fashion (oscillates) at a very high rate sbout the
input x, but still the megnitude of the error is small. In fact, it
is necessary to inspect the error at a scale 20 times larger than that
of the output even to notice this phenamenon. Mathematically this means
that the functions x end y approach one another closely but that
thelr derivetives differ spprecisbly. Physically, however, this 1s not
et all undesireble as long as the magnitude of the error is small.
(Actually for mechanical systems this property would be useful in pre-
venting static friction.) This fine-grained oscilleting character of ¥
is the very essence of the nonlinear control theory. Every time the
error or error derivative goes through zero the parameter set Bp,7, of

equation {8) changes discretely as defined in equations (13) or by the
binery logic of teble 2. The discrete changes in the parameters cause
discontinuities in the second derivative ¥y, which when integrated twice
give y its serpentine character. To illustrate this point, the sketch
of figure 18 shows samples of the superposed input and output of the
nonlinear system. The input in this case could be that of figure 6(a)

or 9(a).

Circle (a) in figure 18 is a typical cycle of the oscillating char-
acter of the output y. Commencing at Ty, the error changes sign at

To, the binery number OOLL is "reed into" the feedback switching circuit

of figure 5, and using the notation of table 2 the parameter combination
3375 is switched into the circuit. This causes an immediate reversal

in the sign of the output acceleraiion y", so that at time Ty the

error derivative changes sign, the binary number 0010 is read in, and
the parameter cambinatlon Bo75 is switched into the circult; sacceler-
ation is still in the same direction but wesker. At time T the error
again changes sign, the binary number 0000 occurs, and the cambination
Bo70 ig swiltched into the circuilt; acceleration is in the opposite

direction. At time Tz the error derivetive changes sign, the binary
mmber 0001 occurs, and B171 is switched 1in; this reduces the acceler-
ation until at time T the error agsin changes sign, 00ll occurs, 5373
is sgain switched inj; the cycle is complete. Although it was not
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mentioned at the time, figure 2 shows this sequence of Bpn,7p combina-

tions. The nature of the acceleration resulting fram the switching can n ;
be seen in figure 1k(a). :

The comparable switching cycle for y >0 and y'< 0 as shown
in circle (b) of figure 18 is:

Logic Paremeters

0l11 3073

0110 Br7o

0100 3370'

0101 Ba71 N
0111 5675'

Similarly, for y< 0O and y'< 0 &s shown in clirecle (¢) of figure 18:

ILogic Parameters
1100 B573
1101 Bo7o v
1111 BO7O
1110 Biyl “
1100 5373

This is the mirror-imege switching cycle for circle (a) (see property (L)
in the section "Properties of Bquation (8) end also the discussion in
the section "Switching Logic").

Finally, for y<O and y'> 0 ag in circle (d) of figure 18:

Logic Parameters
1000 3073-
1001 B17o
1011 5370_
1010 P71
1000 3075

This is the mirror-image switching cycle for circle (b).

With this insight into the detailed behavior of the nonlinear system
more information can be obtained from the exbPerimental slnusocidal responses
of figures 6, 9, and 1l that have up until now been treated from a macro-
scopic rather then microscopic viewpoint.: Along these lines, the followlng
experimentally observed facts are noteworthy:



4

NACA TN 3820 -. 25

(1) In compsring the errors for the 4-volt end the 20-volt peak-
to-pesk sinusoidal inputs in the frequency range of good reproduction
0.1 £ 0 £0.8, it is seen that:

(2) The magnitudes of the errors are nesrly the seme (see
figs. 6(a) and 6(e) and 9{a) and 9(c).

(b) The period of the error is generally smaeller in the larger
emplitude case. This is even more pronounced 1f the k—volt peek-to-peak
case 1s compared with figure 11 for y 1n the region of -20 volts.

(2) Good reproduction is chsracterized by meny e and e' switchings
(see fig. 18) per cycle of the input. As inmput frequency is increased
and the upper limit of small error is reached (figs. 6(e) and 9(e)) the
e and e' swlitchings become more infrequent until there are finally
only two of each per cycle of the lnput.

The fact that the period of the error is smaller for lsrger inputs
can be gleaned from equation (8) when it is rearranged es

y' = -[ED(l + Bm)y‘ + 7ny] + (x - y)
or roughly
¥~ -[ (@ + Bp)x" + x| (18)

For a system with specified B8,,7, parameter values, the lerger input

and input derivatives willl give stronger discontinuities in y" =as the
Bms7n combinations change. This implies that B, ,7,, will change more

often meking the period of the error smaller. See figure llt(a) for the
justification of the approximetions in equation (18) since ¥y, ¥y', ¥,
end x are shown in this figure. (The input x wae sketched in by hend. )

In the frequency range of good reproduction the reason that the
megnitude of the error 1s virtually independent of the input amplitude
canmot be explained fram equeation (8) since this fact is intimately tied
in with the imperfections 1n the feedback switching circuit (see section
entitled "Effects of Switching Imperfections" for details). As measured
from the experimental sinusoldal responses, |e|lpgx 15 of the order of

15 to 20 millivolts. It might be noted that earlier in this section the
smaller 4-volt pesk-to-pesk input sinusoid wes employed in the compari-
son when it was determined that o, should be increased by a factor

of 15 in order to cbtain the same mlin' This choice of the smaller

input wes decidedly in favor of the linear system since the linear error
increases linearly with input emplitude. Thus, if the 20-volt peak-to-
peek input were used, an increase in wy by a factor of 5 X 15 = 75 would

be required to obtain the seame ml:!_n'
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The fact that there is & correlation between good reproduction
(small error) and the existence of many error end error-derivative
switchings i1s very important since 1t is the key to understanding the
upper limits of good performence of the nonlinear system. One approxi-
mete way to investigate this matter is to establish a deflcilency between
the output acceleration required for good reproduction (many switchings)
and the available output acceleration. ZEquation (19) gives an spproxi-
metion to the output acceleration when the system is functioning well:

y' o -[2D(l + Bm)xj' + 7nx] (19)

As an exemple of this approach consider the lnput x %o be a sinusoid
of frequency & (fig. 6 or 9). Since

|| poxe = 921%) pax

max

it is to be expected that the nonlinear system will have the greatest
difficulty in the vicinity of |X|ygy where, from equation (19),

Iy"IID.B.X |7 Ima.x

Thus, i1f in this reglon the output ¥y is golng to interweave the
input x (as is characteristic of good reproduction), then

ly_nlmax > |x"l'max

This inequality then places an upper 1imit on good performance of the
system in response to sinusoids

< v'7n|max

For the system used in obtalning the experbmental results of figures 6
and 9, |7n|max = 2; therefore,

a<\yz2

Inspection of both figures 6(e) and 9(e) tends to substantiate the above
result. For exemple, in figure 9(e) 1%t is seen for § = 1.2 (after the
transient caused by turning on the input has been absorbed) that as the
input goes through its meximum, frequent - and e' switchings stop
and do not occur agaln as the frequency is ihcreased.
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Performance Evalustion of Imputs Other than Sinusoldal

In the preceding section only the sinusoldal response of the non-
linear control system wes discussed in studying performsnce. However,
1t is easy to see that the nonlinesr system will cope with any input in
the same menner as it does with sinusoids. Thus, as long as the magni-
tude of input acceleration does not continuocusly exceed the availeble
magnitude of the output acceleration the switching process will commence
and excellent reproduction will result. This type includes inputs with
dilscontinuous derivatives and discontinuous imputs. The experimental
sinusoidal responses of figures 6, 9, and 1l themselves give some indi-
cation of these facts. For example, in figure 6(a) there wes an initial
discontinuity in the input and there were discontimuities in the input
derivative when the frequency was changed. The results in figures 7, 8,
10, and 12 prove further that the nonlinesr system response is not
dependent upon any specific type of input. Given in these figures are
trienguler-weve, partially integrated squere-wave (including square-wave),

clipped sinusoidal, and rendom? inputs, respectively.

Tt should be noted that in the literature (refs. 1 and 3 to 5) =
marginal-type input thet would present a case of indecision to the
switching circult of the nonlinear system 1s discussed. This case hsas
never been encountered experimentally even when the attempt was to pro-
duce this case. Thus the merginal-type input is not considered practi-
cally important.

Use of Phaese-Plane Methods to Study Performance

The phase~plane methods that were used in the original anslytical
development of equation (8) (refs. 1 and 3 to 5) can also be gainfully

5In the strict statistical sense the probaebllity that the inputs
shown in figures 12(a) and 12(b) are not samples of random stetionsry
time series 1s admittedly high because of existing experimental facil-
ities. These inputs were obtained by random menual modulation (both fre-
quency and smplitude) of a triasnguler-wave input of pesk-to~peak amplitude
A and periocd T where

0 S AS 20 volts
0.1£9Q =2r/T £0.8

Random manual moduletion means that the operator varied by hand both the
frequency and amplitude controls of the input generator as randomly as
possible. In the present investigation the camperative results of the
linear and nonlinear responses to what appear to be band-limited random
inputs are felt to be more importent than the exact statistical proper-
ties of the inputs.
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employed in studying the performance of .the nonlinear control system
derived from equation (8) once the Bn end 7, parameter values have

been specified. (In this section it ig :impor'ta.nt to distinguish between
Bmp end 7, Dparameter values, i.e., 133' =2, Bp= 1, etc., and PByp7,

parsmeter combinations, i.e., Bs7p, ete.)

If in equation (8) the error e = (x = y) 1is sssumed small, then
the output ¥y can be approximated by portions of curves thet satisfy
the autonaomous differential equation

d2y+2D(l+Bm)§)_r+7ny—O (20)

where D, fp, and y, are defined in the section "Nonlinear Conmtrol
Theory." Further, if dy/ar = &y, these approximating curves sre defined
in the gly phase plane by

(7 - 1) 2 = M(7 -'El)xl (21)

where M is a constent depending on initisl conditions and

7\1,,2 = "'D(l + Bm) t {D2(l + Bm)2 -

Equstion (21) comes fram integration of the firr t-order differential
equation .

20+ 8y < 7
& .

i

~2D(1 + By) = 7y 3 (22)
L _ _

Since the particular B,,7, combination employed in each point of
the phese plene depends upon ¥, El’ e, end e', four spproximating

curves go through each point (see sppendix D). The tangents to these
curves (eq. (22)) indicate four directions which lie in an anguler Bector
(see fig. 19). This anguler sector is defined by the two extreme direc-
tions which apply if e and e' have the same sign. The two inner
direction values apply if e and e' have opposite signs. By super-
posing the input =x'x phase plane on.this E,¥ plane it can be stated
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that at any point the tangent to the input phase curve must be included
within the shaded angulsr sector (discussed gbove) if small error is to
be obtained. Thus, equation (22) can be used to study performence. The
width of the angular sector changes with the ratioc ¥ El for given Bn

end y, perameter values. It is largest (180°) for E;—>0 and smallest
for ¥=0 1f (l + Bm) and 7, have the same sign. However, the width
for Eif_>0 is not significant since all phaese curves (iEsluding the
input) have infinite slope there. Thus, along the line §l = 0 the

curvature of the input phase curve must be used to determine limits on
good performance. The radius of curvature of the input must be smaller
than that of the flattest epproximating curve.

In order to illustrate the use of these phase-plene methods in
predicting limits of good performence conslder the exemple of & sinus-
oidal input x = sin Q1. In this case the input is represented by an
ellipge in the phase plene and

d(x') - _gPx
ax x!

In the superposed =xx' and §Ei phase planes of figure 20 are shown
three sinusoidal-input phase curves (i.e., three different frequencies)
end the femilies of phase trajectories of equation (22) for the Bms>7n

combinations where e and e' have the same sign. (In order to avoid
extensive computations, the parameter values indicated 1n figure 20 are
those of an earlier investigation (see ref. 1).) Thus, the tangents to
two intersecting phase curves define the angular sector at that point,
as has been discussed. By tracing the inputs with different values

of £ it can be understood that good performance for the presented
system cen be obtained only for { <, vwhere Q, 1is the parsmeter
belonging to that ellipse which has the same radius of curvature as the
curve through (¥7,8;) = (1.0). (Note thet the radius of curvature of the

approximating curves Jumps at El = 0 and 1s smaller for gl <0.) Im
the first quedrant (i.e., approaching €, =0 fram E; > 0) this radius
of curvature is given by

Ppax = [Pl= =77

Since at thilis point the ellipse radius of curvature is 92/1,

0% < Ty
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Therefore, for the filrst quedrant

@ <\rs - (23)

Here it should be noted that this 1s the same result as that obtained
in the sectlon entitled "Performance Evelustion of Sinusoidal Inputs”
even though the parameter values are different. For the system of fig-

ure 20 75 =0.5; thus @ < ﬂ0.5.

Another exemple is given by the inmput x = 1 - e 9T ywith
d(x')/dx = —. Since the smallest angular Sector is at ¥ = O,
a = 2D(1 + 5max) determines the limite on performence. This means that

for the system represented in figure 20 good control can be expected for
a value of « slightly smaller than 0.75. - :

A step Input is represented by x =1 =« e™%T with @—>w. The
plcture in the phase plane ig x =1 - (l/m)x' with a—w. For very
lorge values of o this is a straight line which forms s smell angle
with x' = 0. For a-»= the curve degenerates to & point (x = 1,

x' = 0). There 18 no doubt that = perfect followup of a step is not
possible because for practical reasone the line for large values of o
does not lie in the allowed enguler sectOr at any point it is passing
through.

Related to the step input is the squere-wave input. A portion of
the output phase trajectory for a squereswave input to the system of
figure 8(e) is shown in figure 21. Figure 21 1s computed with the help
of the differential equation o '

dy _ _ 1 |
d.§l 2D(l+Bm)§l+ (l+7n)y—x

This equation is obtained from equation (8) by replecing day/aTg by
gl(dgl/dy). In this example one cannot immediately use approximating

curves for designlng the output because the error is too big at the start
of the motion. The camputed diagrem is in good agreement with the test
run shown in figure 8(e). '

Effects of Switching Inmperfections

In equation (8) it is essumed that the parameters By &nd 7,

change upon exact zero coincidence of anj one or more of the varisbles
Ys ¥'s; e, amd e' as defined in equation (13) or by the logic of
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teble 2. Physical imperfections, however, preclude this possibility.
Thus, in the simulated model of equation (8), exact zero coincidence
cannot be detected because of threshold effects, and relays are subject
to time lag (both mechanicel and electrical), dead zone, and chatter.

In the present section an attempt is mede to evaluate the effects
that these swltching imperfections hed on the experimental result in
order to obtaln some practical design criteria for specifylng switching
requirements for good performence in other espplications of this method
of nonlinear control.

The experimental results of figures 6, 9, and 11 can be used to
demonstrate that relsy imperfections were not important in the simulated
model. Camparison of the sinusoidal responses In these figures hss shown
that the period of the error beceme smaller as the magnitude of the Iinput
amplitude was incressed. (This was discussed in the sectlon "Performence
Evaluation of Simusoidal Inputs.") From figure 11(a) in the region of
y = 20 volts (the largest magnitude considered in all the experimental
studles) the period of the error T, 1is measured as

Te = wyty = 0.2

There are four parameter switchings per error cycle (see fig. 18).
Assuming these to be approximately uniformiy spaced, the minimum time
between paremeter swltchings is approximstely Te/h. Now assuming that

the releys must be capable of closure in at least 1/5 of this time, the
maximum sllowsble (real time) switching delay tpg 1is

oyt ~ To/20 = 1072 (25)
In the simuleted model w, = 1 radien per second. Therefore,
tpg = 10 millisec

As given in tsble 4, the relays employed were capable of closure in
5 milliseconds or less so thet they were entirely adequate for the experi-
mental studiles.

The ebllity to disregard the relsys in the evaluation of the effects
of switching imperfection on performence leaves only threshold effect in
sensing the sign of the varisbles y, ¥y', e, and e' +to be considered.
As hes been observed and discussed in the section "Performsnce Evalustion
of Sinusoidal Inputs" the amplitude of the error for the nonlinear system
wes relatively independent of the magnitude of the input (i.e., when the
system is operating in the rspid e to e' switching sequence so that
this is the minimum-error case). This constancy of the lower limit on
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the error magnitude is caused by swltching imperfections and thus thresh-
0ld in sensing the signs of varisbles. Since under a normal switching
sequence there are meny more e &nd e' switchings then y or y'
switchings and since the error 1s of an order of megnitude less than the
error derivative, the primery cause of the lower limlt on error is local-
ized as threshold in sensing the sign of the error. Figure 135 shows the
results of an Investigetion of this threshold effect. In all system-
response figures except figure 135 the pesk-to-peak threshold wes spproxi-
mately 14 millivolts. In figure 13(a) the peak~to=peak threshold weas

4 millivolts so thet figures T(a) and 135 give a good comparison of the
effects of these two threshold values. '

Choice of Parameter Values

The performance of a completely specified nonlinear system has been
discussed. The parameter values for this system, thet is,

D = 0.6

Pz = =B =2
Bp = =By = 0.5

73 == = 2

72 = "'71 = 0'[5 L

were initially chosen in the following menner: D was first selected
to give good linear system performance; then the smellest values of the
Bp &and 7p Perameters giving good nonlineer system performance were

chosen experimentally from & systematic variation of parameters utilizing
the simulated system. This particular set of B, and 7y DPeremeter

values can thus be denoted as (ﬁm:7n)miﬁ since they esteblish the lower

bound on parsmeter values for good nonlinear system performance. The
physical .significance of (ﬁm,yn)min is that loop gains and acceleration

requirements of the linear member are minimized since B, and 7n &re
feedback galn constants.

From the discussion in the section "Performance Evaluation of
Sinusoidal Inputs" centering about equation (19) or from the phase-plene
methods of the preceding section it is to be expected that a general .
increase in the parsmeter values over (ﬁh,yn)min will result in improved

nonlinear system performance by increasing the available accelerstion of
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the system or increasing the angular sectors in the phase plane. Inspec-
tion of figures 16(a), system 1, and 16(c), system 5, shows this to be
true. In figure 16(a) the parsmeter values were (Bﬂl")'n)min as glven

gbove, and in figure 16(c), system 5, they were

Bz = =Bp = 10
Bo==-p1 =1
73 = =75 = 10
-7y =1

On comparing the performance of these two systems it is noted that the
corners of the input trianguler wave are reproduced with less error by
the system of figure 16(c). Thus far then it would seem that there is
no upper bound on the paraemeter wvalues; that is

(Bm’ 711) max >

Inverigbly, however, there will be upper bounds on the values of the
parasmeters because of accelerstion limits in the physical system. Fig-
ure 14 shows the effects of placing progressively smasller ascceleration
limits on the system. Here it 18 seen that for Iy"lL > 0‘5,y!'|ma.x per—

formance is not appreciebly affected but for values less than this good
performance 1s no longer obtained so that ecceleration limits definitely
tend to determine (Bm, 7n)max' In general, then, there will be a whole

range of values of B, eand 7y,; that is,

(s 7o) > (Pas72) > (Bms7) min

for which good nonlinear system performance results. The final choice
must depend upon the particulsr application and can easily be found
experimentally.

There are certaln speclal cases of the B, eand vy, parameter values

that lead to simplified feedback switching clrcuits and thus lesd to non-
linear systems that are simpler to reallze. In table 3 three of these
sre denoted as (1) no derivative feedback, (2) no e' sensing, and

(3) no e sensing in derivative feedback loop and no e gsensing in
proportional feedback loop.

By making inoperative the appropriate relsys in figure 5 the sim-
plified switching circuits for these cases are easlly obtained. It is
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desireble then to inspect the performance of these special cases (in
comparison with that of the complete system) to ascertain whether or not

es good performance can be obtained with less complexity. Figure 16

shows the response of these cases in comparison with that of the camplete
system. Figures 16(a) and 16(b) differ from figures 16(c) end 16(d) in
that g?e)general magnitude of the parameters was increased in figures 16(c)
and 16(4). S -

These results show that case (2) is not worthy of much consideration
since the magnitude of the oscillating etror is large. Cases (1) and (3),
however, should be considered for certain applications. For example, 1f
1t were known that the amplitude distribution of the input was relatively
void near zero, then case (1) would serve as well ss the case of the
complete system. Case (3) shows nearly constent percentsge error so that
1t could be useful in cases where accurdcy was not so importent as economy
in components. CLn

To thls polnt the parsmeter D has received little attention mainly
because its value (within limits) is not particulerly importemt. It has
been cobserved experimentally thet D mey be anywhere in the renge
0SDZL1 even for (gm,yn)min end performence of the nonlinear system

1s not affected. Inspection of the block diagram of the nonlinesr system
(fig. 4 or 5) shows that the physical significance of the variation

of D for given values of Bp,y, 1is thht the demping factor of the linear
member and the derivative feedback arouni the llnear member change syn~-
chronously. A case of more practical importance such as might arise in
aerodynemic epplications of this type of conprol system is the varistion
of D for given velues of DBy,7,. That is, the damping factor of the
linear member alone varies while the feeflback values around this member
remain unaffected. Even in this case it has been found that the nonlinesr
system performs well. For exasmple, figure 17 shows the response of the
nonlinear system oo

D=0.12 - -
Bz = -Bp = 12
52="l31=3
75=_7O=1_2

72 = =79 = 0.5

to triangular-wave inputs, while figure 77 shows the response of the system
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D = 0.6
Bz = =Bg = 2
By = =B = 0.5

_7l=2

.'70 0'5

to the same inputs. Comparing these results it is seen that performance
is nearly the seme for both systems.

PRELIMINARY EXTENSION TO HIGHER ORDER SYSTEMS

From a practical standpoint limitations in the applicabllity of the
nonlinear control system described by equation (8) do not stem from the
inebility to realize the feedback switching circult but rather from
assuning the linear member to be of second order. In meny cases a more
realistic approach is to consider the linear member to be of higher order
but stlll predominantly second order. Figure 22 shows the block dlagream
of a third-order system of this nature. The linear feedforward member
could be, for example, the servo of filgure 1 including the effects of
sxrmature inductance. The same second-order feedback switching circuit
was still employed. However, it could not be expected that the Bn,rn
parsmeter values remsin the same. Figure 23 compares the response of a
third-order linesr end nonlinear system. Here 1t is seen that the non-
linear system still responded with much less error than the linear system.

On the basis of the comparatlve performence of these two systems it
seems important to further studies towerd control of general higher order
systems using techniques similar to those developed in this investigatlon.

CONCLUDING REMARKS

From control equation (8) a second~order nonlinear.control system
that tends to maintain small instantaneous error for relatively arbitrary
inputs has been synthesized using digitel-camputer techniques. The only
type of nonlineer operations required in the realization ere switching-
type operations (zero-coincidence detection and paremeter switching).

The switching requirements are severe from the aspect of detector sensi-
tivity and switching time delsy but not impractical since all the switching



is done in feedback paths st low power levels and msy thus be performed
electronically.

The system demands sensing of error and error rate of change. Since
general nolse In a system of this type has to be expected, both error .
and error rate ere smoothed. In an extension of this work imperfections
such as a definite noise level, a given threshold or time delay in the
relays, snd an overall dead time are being investigated more intensively.
It is expected that they do not serilously impair the working of the system.

It is a difficult task to compare the performence of a nonlinear
system with that of a linear system because no general criterion for com-
parison is available. Since for nonlinesr systems the law of superposition
does not hold, it is not adequate to choose the response to a certain
1oput (e g., the step input) as a criterion for performance ccmparisons
A pumber of different inputs therefore have been chosen for exhibiting
the qualities of the nonlinear system. @ -

Experimental results indicate that this type of nonlinear control
gystem performs better than a lineasr control system having s normalized
frequency 15 times greater. Performance is evaluated in terms of the
average value of the magnitude of the lnstantanecus error for band-limited
inputs. Further, the nonlinear system performence is virtually independent
of variatlons in the damping factor of the system.

Stanford University, -
Stanford, Calif., November 23, 1955.
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APPENDIX A

COMPARISON OF EQUATION (8) AND NONLINEAR CONTROL EQUATION

OF REFERENCES 1 ARD 3 T0 5

Comperison of Notations

In original notation the nonlinear control equation was given as
(refs. 1 and 3 to 5)

a%y ay
+ o o _
a 2 + 0 x>+ Yo = vi(t) (A1)
where
¥olt) output
yi(t) input
£by £bo |
b =bH1 + bT sgn (y(')E) + = sgn (yéE')
Ac Ae N
e = c+[1 + ch sgn (Y E) + 5_2- sgn (Y E')
E = (v - ¥1)
() =a( )/at

Abl,Abz,ACl,AC2 Consta-nts, Ahl > Abz, ml > AC2

at,pt,ct constants

In terms of the notation of equation (8) the sbove equation is written

at _d._%rz_ + 'b"'(l + Bm) % + c"‘(l + 7n)y = x(t)} (a2)
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where

Bn = -18 sen (y'e) -~ B san (y'e')ym=0. 1, 2, 3
Tn = =17 sen (ye) - o7 segn (ye'); n=10,'1,2, 3
e=(x-y)

15’25’17’27 COIlStBIl‘tS, lﬁ > 25: 17 > 27
at,pt,ct constants

The subscript convention is

Bz = 1B + B 73 =17 * o7
Bo = 1B = oB Yo =17 = o
B = =B, 71 =75
Bo = B3 70 =773

Evidently, the correlation between equations (Al) and (A2) is then

Yy =Y,
X =¥y
Javs) Ab " Ac Lc
=1 = 202 = =1 = =2
B=— B = 2 Y == 7 =
1 . 2 ¥ 1 of 2 ot
e = =h

and &, b*, and ct are the same.

In either notation a set of seven (constant) persmeters is needed
to charascterize the system. For example, in equation (A2) the set

(a*, vt, cf, 1Bs Bs 175 57) 1s sufficlent.
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Normelization of Nonlinear Control Equation

When considering control systems it 1s possible to reduce the mum-
ber of parameters necessary to specify the nonlinear system. To do this
a form of normaelization femillexr to linear theory is utilized. First,
it should be realized that if error is to be defined as e = (x - y)

then Cf = 1. Thus, assuming Ct = 1 equation (A2) msy be written

2
iu+@1+gm ay 1L+ 7.)y = x(t) (a3)
Where
2_ 1
w,, —E_-
.2_D.='b+
w,

Introducing normalized time T = w,t, equation (A3) becomes

%y dy _
Thus, knowing the netural frequency of the undamped lineer system .,

the number of parameters necessary to specilfy performence in the nonlinear
case is five, that is,

(D: lBJ 25: 17: 27)
or alternatively

(D: 53; 52: 75: 72)
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APPENDIX /B
SIMULATION OF SECOND-ORDER NONLINEAR CONTROL SYSTEM

Equipment
Experimental studies were carried out with the following equipment:

(1) General equipment:
(a) Analog computer, Beckman Ea.se
b) Low-frequency function generator, hp 202 A (inmput device)
¢} Pen recorder, Sanborn Twin~Viso (output device)
d) Vacuum~tube voltmeter, RCA WV-9TA
(e) Oscilloscope, Dumont 304-A

(2) Special equipment: L
(a) Binery-logic switching circuit employed in conjunction
with (a) » Gescribed in deteil in section B:Lnary-Logic
Reley Switching Circuit.”

Computer Setup

The computer diagram for the differentisl equetion

9'32' + 2D(1 + Bm) %y; + (l + 7n)y = x(1) (Bl)

ar

is given in figure 2. The correspondence between this simulated system
and the block disgram of figure 4 or 5 is streightforward (see ref. 6).

Operational amplifiers [> through > are used in simulating the

linear member of the physical nonlinesr:system. Resistor R; provides

adjustment of the linesr damping factor D. The input to this simulated
linear member is x - (2D]3my + 7ny) where x 1s obtained fram the input

device, while the values of feedback 2D[3my end 7ynpy are obtained with
resistors Ry through Rg (see table 5) cc?nngected to y' and y through
a binary-logic relay switching circuit derived in the following section.

Amplifiers l> through are sigﬁ changers. The four variables

¥, ¥', e, and e' whose signs are to;be sensed ere mede availsble as

shown in the lower right of figure 24.
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Binary-Logic Relasy Switching Circuit

To complete the simulation of equation (8) it is necessaxry to imple-
ment the binary logic of teble 2. Figure 5 shows a relsy switching cir-
cuit (designed on an "snd/or" besis) that realizes the necessary logic.

In order to preclude the possibility of time delay in switching,
"fast" relsys have been employed. The average properties of the 1k
double-pole single-throw relsys comprising the switching circuit are
glven in teble L.

The necessary synchronism in releys connected by dashed lines
(fig. 5) is obtailned by series connection of field colls. Into the four
channels of fileld coils thus formed 1s reed the four-diglt binsry logic
of table 2 where now

0 Function > 0 = No coll current

1 = Function < 0 = Coll current

This process of reading in the binary loglic may be done by monitoring

the varisble (¥, ¥', e, e') with four separate zero-coincidence detectors
or emplitude selectors (denoted CD in fig. 5 and described in detail
in the followlng section). The output of these coincidence detectors
then drives the respective chesnnels of relsy colls.

Sensiltive Transistorized Zero-Coincidence Detector

One of the four identicel smplitude selectors designed for use with
the switching clrcuit of figure 5 1s shown in figure 25. This circuit
basically consists of a grounded emitter PNP transistor stage T; driving a

pentode pulse amplifier T2. (It should be possible to utilize a tran-

gistor in place of the pentode if desired.) Four relsy colls connected
in series form the plate load of T,. Positive feedback R5 has been

incorporated for regenerative switching.

The operation of this circuit is as follows: When the input volt-
age V Dbecomes more negative than -50 millivolts, current starts to flow
in the base-emitter region of T;. This initiates collector-emitter cur-
rent which effectively grounds the collector and thus the grid of To.
Plate current flows in To so that the relays which form this plate load
are switched to the up position (fig. 5). Posltive feedback R3 has been
incorporated to make the switching regenerative. Stages Tq and Tpo will
continue to conduct until V goes positive by 50 millivolts, at which
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time current is cut off in T; end thus Ty; the relsys return to the nor-
mally closed positions (down in fig. 5).

Refinements that have been included in this circuit are:

(1) Adjusteble positive feedback Rs. This feedback glves control

over the zero-sensing threshold of the detector. The greater the posi-
tive feedback the greater the threshold. This adjustment is desireble
for studying the effects of threshold in sensing discussed in the section
"Effects of Switching Tmperfections." The measured peak-to-pesk thresh-
o0ld values obtainaeble with this asrrangement were & maxlmum of 400 milli~
volts and & minimum of 60 millivolts. (‘In the computer setup it was
necessary to smplify error e that formed the input to one of these
detectors five timee in order to bring the switching threshold down to

15 millivolts, peak to pesk.)

(2) Adjusteble blas for emltter of T,. This is necessary to com-

pensate for the slight posltive bilas (ap roximetely equal to 100 milli-
volts) given to the base of Ty by the positive feedback Rj. _

(3) A clamping or clipping diode T5:to protect the transistor Ty

from excessive base-emitter inverse voltageg. Thus 1t can be seen that
the input lmpedance of this coincidence detector is 15 kilohms since the
base of T is effectively always grounded.



NACA TN 3826 43

APPENDIX C

BEEAVIOR OF OUTPUT IF INPUT AND INPUT DERIVATIVE
ARE SIMULTANEOUSLY SMALL

Assume that the input is a curve which mey be approximated by
X = are

for values T <. BSince x' = 2ar, both input and input derivative
vanish with T—>0. The input phase curve is ‘

= Liyg1)2
* ll-or,(x)

The output depends on the initial conditions:

0 end y'(0) =0

y:a%H’(%imlTh. }

(1) For y(0)

i
O

(2) For y(0) and y'(0) = €

¥

elE‘—D(l+[3m)'r2+. . ]

(3) For y(0) =e; and y'(0) =0
1+ :
Y=e21+<2—7n)’r2+...

In a1l cases reproduction of the inmput 1s not perfect very close to

T = 03 however, in cases (2) and (3) switch points may occur for rather
smell values of T. In case (1) no switch point close to T =0 can

be expected. This case will rarely occur; in most cases neither y(0)
nor y'(0) will be zero. Then the output 1s a superposition of cases (2)
and (3). In this event the error e =x -y 1is given by

1+
e=-eavelT+‘}+elD(l+ﬁm)-€2( ) n)+. . .1'2:‘-
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It 18 evident that for small values of € and. € the error grows

with a. This can easlly be seen In the results of figure 11l. The imput
wes x = A(1 - sin Q.'r); that measns, near x = 0, the lnput mey be approxi-

neted by a parsbolas with a = 1/2(92)A ~or the errors near x = 0 grow
with 0%,
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APPENDIX D
APPROXIMATING CURVES

The aepproximeting curves which can be used to trace the output for
a8 glven input form a network in the phese plsne. It has proved practical
to present the network for e and e' of equal sign in one sheet
(e.g., see fig. 20) and the network for e and e' with opposite sign
on another sheet. Superposition of both sheets allows establishing of
the four approximaeting curves through each point of the phase plane.

The spproximsting phase curves are determined by equation (21).
Since the values N\; and Ao change from quedrant to quadrant the curves

are composed of portions of different amalytical curves which are patched
at y'=0 and y = O.

The roots Ay &and A, ‘depend on D, B, and 7,; they may be

complex or real. If the roots sre complex, the spproximating curves are
curves of the spiral type which wind around the origin of the phase plane.
In the case of real roots the curves have & quite different cheracter.
This can easily be understood by transforming the eguation of the approxi-
meting curves (see refs. 1 end 3 to 5 and ch. V of ref. 7). For real
roots the new coordinetes p and v are introduced:

?ml = El =
ﬂg - E]_ =v

Then equation (21) yilelds
J2 oM

If A and Ra are real and of opposite sign, the curves in the
pv plane have hyperbolic character with (p,v) = (0,0) as saddle point
(see fig. 26(a)). If Ay and A, s&re of equal sign, the curves have

a nodal point (see figs. 26(b) and 26(c)). In figures 27 end 28 phase
curves with saddle point and steble and unsteble node are shown in the
original yEii plane.

The approximating curves are composed of portions of these different
types (see fig. 29). .
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There is no need of avoilding Bp,7n combinations which lead to

node-type approximating curves because only portions of these curves

ere used. In the earlier publicetions it appeared as if (in elther one
of the networks of approximating curves) one set of curves hed to be
formed by curves of spiral cheracter (cdmplex roots A). However, this
has proved to be.en unnecessary restriction. There might be some trouble
wilth node—type curves if large delays in switching should occur (e.g. B
delays in y' = O switching in fig. 29).
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TABLE 1.~ CODING SCHEME FOR SWITCHING LOGIC FORM EQUATION (1k)

[0, function > 0; 1, function < 0]

Binery coded decimal

Decimal

o

0]

HFEHHEFHEFHEHEFHOOOOOOOO | %

HHHEFHFOOOOFRHHPOOOO |4
HFHFOOFHFOOFRHFOOHHOO

HFOFOFRPORORFRORROHOKHO

o
GFGEEBvomwoaurunrol o
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TABLE 2.~ MATRIX OF ALIOWED By,7n

BY ENCODED SWITCHING LOGIC OBTAINED FROM EQUATION (lh)a

COMBINATIONS AS DETERMINED

Bo B1 Bo B3

y 0000 0100

Y 1111 1011
y 0001 0101

L 1110 1010
y 0110 0010

2 1001 1101
y 0111 0011
> 1000 1100

a'Exa.mlz»'_l.es: 3370 is chosen when 0100

occurs, i.e.,

or when 1011 occurs, i.e.,

(y >0, y'<0, e>0, e' > 0)

(y <0, y'>0, e<0, e'<0)

Bo71 1s chosen when OlOl occurs, 1l.e.,

or when 1010 cccurs, l.e.,

3175

is not possible.

(y>0,y'<0, e>0, e' <0)

(y<0,y"'>0, e<0, e'>0)

L9
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TABLE 3.~ PARAMETERS FOR FIGURE 16

Figs. 16(a) and 16(b) Figs. 16(c) and 16(d)

Complete system

System 1: System 5:

B3 = —BO =2 75 = -70 = 2 33 = -BO = 10 75 = -70 = 10
Bo = -1 = 0.5 7o = =y; =0.5 Bo = -B1p =1 Yo = =yp =1
(1) No derivativeéfeedback

System 2: Sy&tem 6:
BB = —BO =0 75 = —70 = 2 BB = —BO =0 75 = —70 = 10
Ba = —Bl = 0 y2 = -71 = 0.5 Ba = _Bl =0 72 = -71 = L

(2) No e' Bgensing

System 3: System T:
53 = -BO = 2 73 = =Yg = 2 35 = —BO = 10 75 = =70 = 10
Bp=-BL=2  7p=-7=2 Bp =By =10 7p=-7, =10

(3) No e sensing in derivative feedback loop and
no e' sensing in proportionel feedback loop

System 4: System 8:
B5 = —BO = 2 73 = —70 = 2 53 = _Bo = 10 73 = -70 = 10
=-yp =2 Pp=-Bp =-10 75 ==~y =10

"
1

N

2
o

By = =B
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TABLE 4.- AVERAGE PROPERTIES OF RELAYS FOR SWITCHING

CIRCUIT OF FIGURE 5

Description: General Electric-CR-2791
double-pole single-throw reley mounted
on 5-prong Amphenol base with permanent
aluminum dust cover

Connections:
2
3 L 3
5
2 5
L
1 1
Electrical Properties Values
Coll resistance 2.5 killohms
Coll current for
positive action 5 to 10 ma
Pull-in time 2 millisec
Drop-out time 3 millisec
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TABLE 5.- CORRESPONDENCE BETWEEN ADJUSTABLE COMPUTER

ELEMENTS AND PARAMETERS OF EQUATION (8)

Element Corresponds to g?]i_:;s
R, (2p)~t 100
Ry (2Dpg)~t 100
Ry (208, )"t 100
R, (2p, )"t 100
Rs (2D85) -1 100
Rg (70)-1 100
By (7)™t 100
Rg (7)™t 100
Rg (7)™ 100
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isumming points —-\\ Motor, gear train, jdly
X X Km y
Inputeél? 1 p(Jp + B} Output

K2 P

Gain Tachometer

Figure 1.- Block diagram of simple positional servo. J, inertie of motor
rotor, gears, and reflected load; B, viscous demping of motor and
reflected load referred to motor shaft; kn, constant of proportionality

between output velocity and back electromotive force (it includes arma-
ture resistance and gear ratio from motor shaft to load).

I |
Damping Gain
B : Ty, {
a0 )
1°4] 2 o il P =
| 2° T2 | — IEY T2 | -
1 s 7 | LA
| —L— | —
l Bo_l 1 Yo_!
|
-

Figure 2.- Illustration of stepwise nature of parameters Bp and 7p.
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il
p2 + 2Dp + 1
\
P [ 2P
}
Yy |
J
-~ e

Output

Figure 3.- Block dlagram of equation (8) a.ssuining that By and ¥y, are
constant (denoted by encircling dotted line).
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¥
Output
‘\l:l_
| 2Dp
‘ |
!
l
F--—1
I |
l |
- |
l
r_._._.l_____
| Switching f
l logic I
b — —— —— -

Figure 4.- Block diasgram of equetion (8) teking into eccount .stepwise -
switching nature of B, and 7,.
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X 1 ¥
2 . .-
Input P+ 20p + 1 Output
2Dp |

D
=l |

:
Al

Sensed T l ; I I
varisbles ¥y ¥yt e el

Figure 5.- Block disgram showlng completé physical interpretation of
equation (8). €D, zero-coincidence detectors.
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i
T
i L
T

EINRE

steps.

o/w, = 0.1 to 0.% in 0.1 steps.

(b) ILinear system;

Figure 6.- Linear and nonlinear system responses for 20-volt peak-to-
D = 0.6; 2.5 small

peak sinusoidal inputs with freguency § varied.
divisions on time scale = 1 normslized time unit; tick marks at

bottom of figures indicate where frequency was varied.
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I H BIHE i i i HH
£ L : 1
H oy & : :
e E i
Hjig
H
o= !
- | i hJ :
HEH ég :
b 0, H4vir i E 3
t
: FHEHH B FEEEEEEE i B
H it . E " : i =5
Y e i
= Srataiim
E : L =

(¢) Nonlinear system; @ = w/wy, = 0.5 to 0.8 in 0.1 steps.

il i 3 g;:::1-'=1"Z;TrI-: B
H H 133 E ki 1} # 3 1
1V g : { Al
H 1 + b a 1"-~ firs
) 2 dhiinspidea
E S i
L\ LEHH t i H
H = ]_ :
£ BV : 5
- - (Y
i0v
£i :
i ive). 5o HHEE
i e
1258 21 3

(d) Linear system; 9 = w/wy = 0.5 to 0.8 in 0.1 steps.

Figure 6.- Continued.
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(e) Nonlinear system; Q = w/wy = 1.0 to 2.0 in 0.2 steps.
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(£) Iinear system; Q@ = w/wy = 1.0 to 2.0 in 0.2 steps.

Figure 6.- Concluded.
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(e) Nonlineer system; Q@ = 2x/T = 0.1 to 0.4 in 0.1 steps.

m“ E_-
'éEEE&E%ﬂ”

(b) Linesr system; Q = 2x/T = 0.1 to 0.% in 0.1 steps.

Figure 7.~ Linear and nonlinear system responses to 20-volt peak-to-pesk
trianguler-wave inputs with period T <veried. D = 0.6; 2.5 small
divisions on time scale = 1 normalized time unit; tick marks at bottom
of figures indicete when periods were varied.
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(c) Nonlinear system; Q = 2x/T = 0.5 to 0.8 in 0.1 steps.
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(&) Linear system; Q = 2x/T = 0.5 to 0.8 in 0.1 steps.

Figure T.- Continued.
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(e) Nonlinear system; Q = 2x/T = 1.0 to 2.0 in 0.2 steps.
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(f) Nonlinear system; Q = 2x/T = 1.0 to 2.0 in 0.2 steps.

Figure 7.~ Coné¢luded.
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(a) Nonlinear system; a = 4 and 2. Tick mark at bottom of figure indicates
where a was varied.
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(v) ILinear system; a = b and 2. Tick mark at bottom of figure indicates
where o was varied.

Figure 8.- Iinear and nonlinear system responses to 20-volt peak-to-pesk
partially integrated square-wave inmput. D = 0.6; 2.5 small divisions
on time scale = 1 normalized time unit.
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(c) Nonlinear system; o = 1 and 0.5. ' Tick mark at bottom of figure
indicates when o ‘Wwas varied.

(d) Linear system; o = 1 and 0.5. Tick mark at bottom of Pigure indicates
when o was varied.

Figure 8.- Continued.
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(e) Nonlinear asnd linear systems; o = O. Tick mark at bottom of figure
indicates demarcation between nonlinear end linear systems.

Figure 8.- Concluded.



66 B A : NACA TN 3826

i e

iy

:
L

011 —————

(b) Linear system; O = w/wv = 0.1 to 0.4 i1n 0.1 steps.

Figure 9.- Linear and nonlinear system responses to 4-volt peak-to-peak
sinusoidal inputs with frequency Q' varied. D = 0.6; 2.5 small
divisions on time scale = 1 normalized time unit; tick marks at
bottom of flgures indicate where frequency was varied.
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(c) Nonlinear system; Q = wfw, = 0.5 to 0.8 1in 0.1 steps.
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(d) Linear system; Q = as/a.)v = 0.5 to 0.8 1in 0.1 steps.

Figure 9.- Continued.
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(e) Nonlinear system; Q = a.)/cnv =.1.0 to 2.0 in 0.2 steps.

5 i :
Flv f i
i i R S
|
| >

s
(f) Linear system; Q = wﬁmv = 1,0 to 2.0 in 0.2 steps.

Figure 9.- Concluded.
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(2) Nonlinear system; Q = wlwv = 0.1 b0 0.4 in 0.1 steps.
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(b) Linear system; Q = u.)/mv = 0.1 to 0.4 in 0.1 steps.

Figure 10.- Linear and nonlinear system responses to 20-volt pesk-to-
peak sinusoidal inputs with frequency Q varled that are clipped
symetrically at +6 volts. = 0.6; 2.5 small divisions on time

scale = 1 normalized time uni‘b; tick marks at bottom of figures indi-
cate where frequency was varied.
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(4) Linear system; @ = w/mv = 0;5 to 0.8 1in 0.l steps.

Figure 10.- Continued.
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1.0 to 2.0 in 0.2 steps.
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(f) Linear system; Q = w/wv = 1.0 to 2.0 in 0.2 steps.

Figure 10.- Concluded.
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() a-= wfw, = 0.5 to 0.8 1in 0.1 steps.

Figure ll.- Nonlinear system responses of 20-volt peak-to-peak sinusoidal
input with frequency { varied that has been displaced by =10 volts
(@irect-current component) for cbteining osculation. D = 0.6; 2.5 small
divisions on time scale = 1 normalized time unit; tick marks at bottom
of figures indicate where frequency was varied.
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(a) Nonlinear system.
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(b) Linear system.

Figure 12.- Linear and nonlinear system responses for triangular-wave
input whose period and amplitude are randomly modulated. D = 0.6;
1 small division on time scale = 1 normalized time unit.
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(a) Nonlinear system response to tri. ilar-wave Input with period varied

as in figure T(a)., D = 0.6; tick marks at bottom of figure indicate
when period wes varied. Threshold in sensing sgn e was 44 millivolts.
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(b) Constant imput x(t) was 9 volts.

Figure 13.- Effects of switching delsys due to threshold in sensing sgn e.
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(b) Nonlineer system; tl2-volt y" limit.

Figure 1h4.- Nonlinear system responses to 20~volt peak-to-pesk sinusoidal
input with varying acceleration limits. D = 0.6; Q = ®jw, = 0.5;

2.5 small divisions on time scale = 1 normslized time unit.
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(c) Nonlinear system; #D-volt y" Ilimit.
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(d4) Nonlinear system; 1:7-]2-'- ~-volt y" 1imit.

Figure 14.- Continued.
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(£) Nonlinear system; %-volt y'  limit.

Figure 1k4.- Concluded.
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(b) Linesr system.

Figure 15.- Linear'and nonlinear systém responses to 20-volt pesk-~to-
pesk sinusoldal input with tk%-—volt veloclity limitf' D = 0.6;

Q =2¢/T = 0.5; 2.5 emall divisions on time scale = 1 normalized
time unit. S
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(a) Complete system 1 and system with no derivative feedback 2.
System 1: Pz = -Bg =25 By = =By = 0.55 73 = -7 =25 75, = -7 = 0-5-_

System 2: 53 = _BO = 0; B2 = —Bl = 0; 73 = ‘70 = 2; 72 = "71 = 0.5.

sensing in deriva-

sensing 3 and system with no e
sensing in proportional feedback loop L.

—BO=25 B2=—Bl=2; 73=-70=2; 72=-—7l=2.

(b) System with no e
tive feedback loop and no e!

System 3: [33 =
System h: B; = -By = 25 B, = -B; = -2; 73 = <79 =55 Yy = -7y = 2.

Figure 16.- Responses of nonlinear system with four different parameter

sets to a 20-volt peak-to-peak triangular-wave input with fixed period
T = 10x. D = 0.6; 2.5 small divisions on time scale = 1 normslized

time unit; tick merks at bottom of figures indicate demarcation between
systems.
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(c) Complete system 5 and system with no derivative feedback 6. |
System 5: 55 = =By = 10; By = =By = 1; 73 = "7 = 10; Yo = =71 = L.
System 6: Bz = -Bg = 0; By = =B, = p;-73 = -7 = 10; 75 = -7y = L.

i

(d) System with no e' sensing T and system with no e sensing in deriva-
tive feedback loop and no e' gensing in proportional feedback loop 8.

System T: [33 = ~By = 10; By = =By = lO;; 75 = -7 = 10; Yo = =71 = 10.
Sys-tem 8: B3 = —ﬁo = lO; BQ —Bl = —l?; 73 = -70 = lO; 72 = "‘71 = 10.

I

Figure 16.- Concluded.
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(b) @ =2n/T = 0.5 to 0.8 1in 0.1 steps.

Figure 1T7.-~ Nonlinear system responses to 20-volt pesk~to-peak triangulsr-
wave input with period T wvaried. D = O. 1; Bz = =Bg = 12; Bo = =By = 3;
75 = =% = 23 Tp ==Yy = 0.5; 2.5 small divisions on time scale = 1 nor-

malized time unit; tick marks at bottom of figures indicate where period
was varied.
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Figure 18.- Sketch showing portions of superposed input and output of
nonlinear system magnified epproximately 100 times.
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Figure 19.- Phase-plene angular sectors defined by equation (22) for the
glven pareameter values. 1B = 1.5; oB = 0.5; 17 = 0.h45; o7 = 0.05;
2D = 0.25; @, = 2.
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NACA TN 3826

Figure 20.- Buperposed input and output phase planes showing aveilsble
enguiar sectors for simisoidal imputs.
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Figure 21.- Portlon of output phase diagram for square-wave input.
ﬂ5 = —BO = 2; B2 = -Bl = 0.5; 73 = -70 = 25 72 = -71 = 0,5; D= 0.6,'
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Figure 22.- Block disgram of third-order nonlinear control system.
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(b) Linear system.

Figure 23.- Linear and nonlinesr third-order system responses to random

input. T = 0.1; D = 0.6; 2.5 small divisions on time scale = 1 nor-
melized time unit.
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Figure 2k.- Computer disgram for simuletion of egquation (8).
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Figure 25.- Trensistorized zero-coincidence detector.
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Figure 26.- Curves in  uv plane.
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Figure 27.-~ Phase. curves with saddle point.
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’//,/i::::::: 'Ei = dy/d«
(a) Stable node. - "(b) Unstable node.

Figure 28.- Phase curves with nodal point.
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Figure 29.- Composition of an spproximating curve.
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